Supplementary Notes on Dedekind Cuts

نویسنده

  • WENLIANG ZHANG
چکیده

Motivation: Our textbook discusses and even proves many properties of R, the field of real numbers; but it doesn’t define it. I felt that it would be rather awkward to discuss real numbers without knowing what they were and I decided to write some notes on the construction of R. The approach I am following is called ‘Dedekind cut’, discovered by a German mathematician, Richard Dedekind (1831-1916), and published in 1872. Idea: The idea behind Dedekind cut is roughly the following. Each rational number r can be naturally identified with {x ∈ Q|x < r}. However, if one looks at all similar subsets of Q, one will soon find ‘things’ other than rational numbers. For example, {x ∈ Q|x < 2 or x < 0}

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic of Dedekind cuts on ordered Abelian groups

We study Dedekind cuts on ordered Abelian groups. We introduce a monoid structure on them, and we characterise, via a suitable representation theorem, the universal part of the theory of such structures. MSC: 06F05; 06F20

متن کامل

Dedekind's Real Numbers

Richard Dedekind's characterization of the real numbers as the system of cuts of rational numbers is by now the standard in almost every mathematical book on analysis or number theory. In the philosophy of mathematics Dedekind is given credit for this achievement, but his more general views are discussed very rarely and only superrcially. For example, Leo Corry, who dedicates a whole chapter of...

متن کامل

Arithmetic of Dedekind cuts of ordered Abelian groups

We study Dedekind cuts on ordered Abelian groups. We introduce a monoid structure on them, and we characterise, via a suitable representation theorem, the universal part of the theory of such structures. MSC: 06F05; 06F20

متن کامل

A Logical Calculus to Intuitively and Logically Denote Number Systems

Simple continued fractions, base-b expansions, Dedekind cuts and Cauchy sequences are common notations for number systems. In this note, first, it is proven that both simple continued fractions and base-b expansions fail to denote real numbers and thus lack logic; second, it is shown that Dedekind cuts and Cauchy sequences fail to join in algebraical operations and thus lack intuition; third, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010